Geospatial Data Processing in Python: A Comprehensive Tutorial
- Level:
- intermediate
- Room:
- club a
- Start:
- Duration:
- 180 minutes
Abstract
In this tutorial, you will learn about the various Python modules for processing geospatial data, including GDAL, Rasterio, Pyproj, Shapely, Folium, Fiona, OSMnx, Libpysal, Geopandas, Pydeck, Whitebox, ESDA, and Leaflet. You will gain hands-on experience working with real-world geospatial data and learn how to perform tasks such as reading and writing spatial data, reprojecting data, performing spatial analyses, and creating interactive maps. This tutorial is suitable for beginners as well as intermediate Python users who want to expand their knowledge in the field of geospatial data processing.
Description
Geospatial data, which refers to data that has a geographic component, is a crucial part of many fields, including geography, geography, urban planning, and environmental science. In this tutorial, you will learn about the various Python modules that are available for working with geospatial data.
We will start by introducing the GDAL (Geospatial Data Abstraction Library) and Rasterio modules, which are used for reading and writing raster data (data stored in a grid of cells, where each cell has a value). You will learn how to read and write common raster formats such as GeoTIFF and ESRI ASCII, as well as how to perform common raster operations such as resampling and reprojecting.
Next, we will cover the Pyproj module, which is used for performing coordinate system transformations. You will learn how to convert between different coordinate systems and how to perform common tasks such as converting latitude and longitude coordinates to UTM (Universal Transverse Mercator) coordinates.
After that, we will introduce the Shapely module, which is used for working with geometric objects in Python. You will learn how to create and manipulate points, lines, and polygons, as well as how to perform spatial operations such as intersection and union.
Then, we will cover the Folium module, which is used for creating interactive maps in Python. You will learn how to create simple maps, add markers and popups, and customize the appearance of your maps.
Next, we will introduce the Fiona module, which is used for reading and writing vector data (data stored as individual features, each with its own geometry and attributes). You will learn how to read and write common vector formats such as ESRI Shapefile and GeoJSON, as well as how to access and manipulate the attributes of vector features.
After that, we will cover the OSMnx module, which is used for working with OpenStreetMap data in Python. You will learn how to download and manipulate street networks, buildings, and other geospatial data.
Next, we will introduce the Libpysal module, which is used for performing spatial statistics and econometrics in Python. You will learn how to calculate spatial weights, perform spatial autocorrelation tests, and estimate spatial econometric models.
Then, we will cover the Geopandas module, which is used for working with geospatial data in a Pandas DataFrame. You will learn how to load and manipulate vector data, perform sp